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Abstract-Min-max type problems arise in structural design when the objcctive is to minimize the
maximum value of some local measure of system response, e.g. design to minimize the maximum
stress or displacement. A method is described whereby the min-max problem is interpreted as a
simple min problem. Governing equations for the adjoint structure are derived directly from the
Lagrangian for this min problem by using the generalized multiplier rule on the original state
equations. Also certain advantages are demonstrated for a modified form of the min-max problem,
a form obtained by introducing a relaxation on the local constraints. The analysis is applied for
examples of structural design with stress and displacement criteria, and for the design of an elastic
foundation to minimize support pressure.

INTRODUCTION
Practical requirements as constraints in structural optimization problems often lead to
mathematical statement in the form of min-max problems. Minimization with respect to
the design of the maximum value of stress or displacement over the structure are simple
examples of this type of problem. A general method is provided in this paper for the
formulation of min-max structural design problems directly via a formal procedure. The
method is substantiated on the basis of generalized Kuhn-Tucker theory. The existence of
solutions for such design problems is treated as well.

It is common to interpret some of the necessary conditions associated with the cited
min-max problems in terms of an adjoint structural analysis problem. The term represent­
ing load in the adjoint problem may be singular (e.g. whenever the constraint on local
measure of structural response is tight only at points in the domain of the structure). This
load is identified as a Dirac function in certain prior treatments of the latter of the examples
cited above (e.g. [1,2]). The support in analysis for this form of the "adjoint load", and for
the evaluation of the design derivative as well, is provided in Haug's paper[2]. (A compre­
hensive and well documented discussion of optimal design relative to displacement con­
straints is presented in this paper.) The singularity is avoided via the introduction of a
"p-norm" measure of displacement in the paper by Banichuk et al. [3J on plate design. In
related developments presented by Mroz and Mironov[4], where a broader treatment is
given for problems of design within mechanical (state) constraints, the "singularity issue"
does not arise since only global measures of the constraints are considered.

In the development presented in the next section, the min-max problem is recast as a
simple min problem. Governing equations for the adjoint problem are produced here as
certain of the necessary conditions associated with the Lagrangian for this min problem.

In a separate part of the development, it is established that with the introduction of a
function that comprises a relaxation of the local constraint the entire problem may be
analyzed in terms ofordinary functions, i.e. the singularities mentioned above are avoided.
Also it is demonstrated that solutions of the relaxed problem converge to the solution ofthe
original one as the relaxation approaches zero.

Two specific example problems are treated in order to demonstrate the method of
formulation, and various other applications are discussed as well.
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INTERPRETATION AND ANALYSIS FOR MIN-MAX PROBLEMS

The objective is to establish a variational formulation applicable in a general setting for
optimal structural design problems that have the form ofmin-max problems. For simplicity
the development is demonstrated using the particular structural models identified with
linearly elastic beams or plates. However similar procedures may be employed for a broad
variety ofstructural design problems.

Function /(D, w) depending on design D(x) and on deflection (state) w(x) and its
derivatives is used to represent in general form the criterion for min-max design problems.
Thus / expresses some local measure of structural function; examples are the
deflection itself if = w) or a component of stress, or some function of the state of stress.
Generally, if the sign of the function is indefinite, then the absolute value of/is used as the
criterion. A simple single-criterion design problem has the form

min{maxV(D, w)11
O(x) XED

subject to:
State equations
Design constraints.

The set of admissible designs D is defined through the design constraints: 0 identifies the
domain of the structure.

There is in gener-cd no assurance that the argument max [1f(D, w)1J of the above design
problem is differentiable. The problem is restated as a simple min problem in terms of a
bound, say p, on the value of the criterion function/, i.e.

Min (P) (I)
O(x)

Subject to

/-P5.0 for all xeO (2)

-pf-P5.0

aD(w, v) - b(v) =0 for all veV (3)

Design constraints. (4)

Within usual restrictions the ordinary variational methods are applicable to this problem.
Moreover the solution to problem (1}-(4) may be identified easily with the original min-max
problem.

Constant Jl is introduced here to accommodate the slightly broader problem where the
upper and lower bounds on / may have different values. In the "virtual work" form of
statement for state eqn (3), aD(-,') is the energy bilinear form associated with structure D, b
is the load linear form, and V~H'2(O) represents the space of admissible virtual displace­
ments. The boundary value problem statements corresponding to eqn (3) has the form:

ADw =p, with boundary conditions (5)

where AD is a linear differential operator depending on design D, and p represents load. The
admissible designs are defined in terms of resource limitations (volume or weight of
material), production constraints, and in terms of constraints ensuring the existence of a
proper solution to the optimal design problem; all such constraints are covered by the label
"design constraints" in eqn (4).

The procedure by which the original min-max problem is interpreted as indicated in
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(I }-(4) is not novel. Tvergaard [51 uSes it in the rriin~ftiax (stress) fonnulation ofa fillet design
problem, for example. Pedersen and Laursen[6] make use of the same device in subsequent
work on computatiomil means to solve discrete design problems. More recently, Miele et
al. [7] used the procedure in their treatment of control problems.

Depending on the form offunctionj, singularities may arise out ofthe constraints (2).
The occurrence ofsingularities, particularly in the multipliers for constraints (2), and the use
of a constraint relaxation are discussed in the next section. For the purpose of the
development and examples given here, the constraints are taken to be in U.

Within this context, necessary conditions for the problem (l}-(4) may be obtained by
formal procedure as stationarity conditions for the augmented functional:

Here'" represents the constraints ofeqn (4). Stationarity ofL with respect to w(x) produces
the adjoint state (costate) equation. Dems and Mroz (e.g. [8]) in particular have made
extensive use of the notion of an adjoint problem in their approach for the variational
formulation of structural design. However in their work the adjoint is introduced as part of
the statement of the governing functional, rather than being derived from a Lagrangian.

To demonstrate the results for beams as a particular example, suppose that function
fin constraint (2) may depend on derivatives ofw(x) up to the second, i.e.f(D, w, w', w"),
and beam rigidity is represented by R(D) differentiable in D. Then

aD(w, v) =f: Rw"v" dx

b(v) = f>v dx

ADw =(Rw")"

and stationarity with respect to variation in w(x) requires

(R -")" [( ) afJ" [( ) afJ' ( ) afw = TIl -"2 - - "1 -"2 - + Ttl -"2 -.aw" aw' aw

(7)

(8)

(9)

(10)

Here wsymbolizes the solution to this (adjoint state) equation. We note the form of
dependence of the R.S. of (10), termed the adjoint load, on multipliers Ttl and "2' Also,
for this problem the equation, usually labelled as the "optimality condition", that reflects
stationarity of L with respect to design Dis:

(11)

The first term in this equation is identified with a measure of design sensitivity; the measure
itself is termed "mutual specific energy" in the design domain.

Both the original and the adjoint state equations are represented in functional form
through the Lagrangian (6a). This feature is emphasized here by rewriting the Lagrangian,
using symbols wand wfor state and adjoint state respectively:

To summarize the treatment thus far, an interpretation in the form of a simple min
problem has been given for min-max structural design problems, the Lagrangian for this
min problem is identified, and the associated adjoint state and optimality condition
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equations have been exhibited. Other implications of the analysis become apparent with
a more detailed considerations of the necessary conditions. It is useful in this respect to
follow examples of application; the particular design problems treated next serve well
enough for this purpose.

EXAMPLES

Taking the height hex) of a beam with solid rectangular cross-section as the design
variable, the objective in this example problem is to minimize the maximum stress. In this
case the stress is proportional to hw" so that the design problem is stated:

min [max If = hw"lJ·
h(xj x

The corresponding min problem is:

min(fJ) .
"

Subject to:

hw" -fJ ~O }
-phw" -fJ 5.0

hmin -h ~ 0

(12)

b f: h dx - W ~ O.

The function rxh 3 (rx =constant) equals beam rigidity. Admissible designs are defined in
terms of the last two constraints; W, the bound on total resource, and hmin, the bound on
local measure of the design, represent specified non-negative values. Width b of the beam
is taken to be constant.

For this problem Lagrangian (6) has the specific form:

L = fi + f: {11I(hW" - fi) + 112( - phw" - fi)

- rxh 3w"w" + pw + '13(hmin - h)} dx + 11{b f> dx - W] . (13)

(Note that the last two terms in this expression were represented in (6) by"'.) Stationarity
of L requires

I - J: (111 + '12) dx = 0

- 3ah2w"w" - 113 + 114b + (111 - P112)W" =0

- (rxh 3w")" + [('II - p'1~]" =0

'11(hw" - fJ) = 0

'I2( - phw" - fJ) = 0

(14)

(15)

(16)

(17)

(18)
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(19)

(20)

The solution is governed by these equations together with the original constraints and the
(Kuhn-Tucker) conditions 'Ii ~ O. The first equation represents a normalization of the
multipliers (adjoint load) 'II and '12' The second and third equations arc: simply the specific
forms of optimality condition (II) and adjoint state eqn (10) for this example. Note that
from eqns (14), (17) and (18), constraints hw" - fJ ~ 0 and/or - phw" - fJ ~ 0 are tight
at the least somewhere in the domain (0, f). In other words, in the solution for stationarity
of L, the value of criterion measure hw" (or - phw") at its maximum equals fJ. This
substantiates the identification of problem (12) with the associated min-max problem, or,
in the more general form it serves to identify the problem (1}-(4) with its min-max
problem.

From the fourth and fifth equations we have that 'I. and '12 are orthogonal, 'I• • '12 =O.
Additional interpretation of the system provides that 'I4:F 0, whereby the resource
constraint is tight. Also, by the switching equation '13(hmin - h) =0, the domain (0, f) is
covered in intervals with either h > hmi,,; '13 =0 (design intervals), or h =~n; '13 ~ O. In the
design intervals 'I.:F 0, '12 = 0 and hw" - fJ = 0, or 'I2:F 0, 'I, = 0 and - phw" - fJ = O.
Making use of these results the entire system can be reduced by algebraic manipulation
to a substantially simpler form.

In fact the solution itself is obtained directly for simple loads; for p(x) =poX/f as an
example, the shape of the optimal beam in design intervals is given by
h(x) = [Po(x 3+ C.X + c2)/6fpfJ]1/2, where c. and C2 are constants. An iterative method is used
to determine the boundaries (XI and X2 in Fig. I) of design intervals, and the values of fJ,
integration constants, etc. 'Details of the solution for a simply supported beam under the
cited load and for p = I are shown in the figure.

As a second example, we treat the foundation design for a beam on a linearly elastic
foundation. The objective is to determine foundation modulus, say k(x), that minimizes
the maximum foundation pressure. The magnitude of pressure is given by Ikwl (w = beam
deflection), so the design problem is stated as min [max IkwlJ. Note that in this example
the criterion function again depends explicitly <triX\he state and the design functions. The
"minimize on a bound" form for this problem is:

min (P)
k(x)

Subject to:

kw - fJ ~ 0

-pkw -fJ ~O

f: [Rw"w" + (kw - p)w] dx =0

K- J:k dx ~O.

In contrast to the prior example, here the measure of global resource is bounded from
below while the design k(x) is limited locally from above (the system does not admit
solutions with k ~ 0).

The Lagrangian is formed for this problem, and the solution may be established from
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Fig. I. Optimal design of a simply supported beam to minimize maximum stress.

the associated necessary conditions, in much the same way as was indicated for the first
example (for brevity the details are omitted). A solution is sketched in Fig. 2 for the case
p=O, hinged supports, and with prescribed, equal-valued displacement of the beam ends
into the foundation. As indicated in the figure, the magnitude of foundation pressure is
constant in the design intervals (Ikwl =P) in the optimal solution.

A RELAXED FORM FOR MIN-MAX PROBLEMS

In problems where the criterion function is directly a measure of state or of its first
derivative, the adjoint load (multipliers 'II and '12) is in general singular. This property is
demonstrated for the former case, i.e. min [max Iw(x )/1, where w(x) represents beam or plate

D

deflection. The Langrangian (6) for the problem is stated as:

L =P+ fa ['II(W - P) + 'h( - J.LW - P)] dO - aD(w, w) +hew) + l/J, (21)

and the associated necessary conditions related to multipliers 'I. and '12 are:

(22)

/p

x/9.

>< I.:.<

III
::J

';
-.:J
0

::E

c
0...,
'"-.:J
c x/9.::J
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Fig. 2. Optimal design of foundation modulus to minimize maximum foundation pressure.
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'71(X) = 0 if w(x) < P; '72(X) = 0 if - jlw(x) < P

'71(X) ~ 0 if w(x) = P; 'h(X) ~ 0 if - jlw(x) = p.
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(23)

Typically the deflection function cannot have constant value over any interval of positive
measure. whereby the stated conditions (22)-(23) dictate that '11 and '72 must be certain linear
combinations of Dirac c5-functions. Haug[2] substantiates this result; also in his variational
formulation Cinquini[l] identifies the adjoint load as a Dirac-function, but the above
normalization (22) is not present in his treatment.)

According to this result, the determination of (adjoint state) wrequires the solution
of a beam or plate boundary value problem with singular loads. As an alternative, by
treating this type of problem in a slightly modified form such singularities may be avoided.
The modification amounts to a globally-bounded relaxation relative to the original
constraint on local measuref(D, w). Thus the prior constraint If(D, w)1- PsO is rewritten
in terms of relaxation f. (x) as If(D, w)1- (P + f.) S O. In place of a problem statement such
as (1)-(4) of the original problem, the relaxed problem is stated as:

Subject to

minp
D

f-(P+f.)SO}
-jlf-(P+f.)SO

aO<w, v) - b(v) = 0

Dmin-D sO

faDdn-WSO

-f.SO

(24)

(25)

(26)

(27)

(28)

(29)

(30)

with f as before, and f. EL2(0). C, E, Dmin, and W represent specified nonnegative
numbers. Thus the relaxed problem corresponds still to minimization with respect to
design of the bound value P, but now with an admissible violation f.(x) (the admissible
set is defined by (29)-(30» of the bound on f, where the total measure of violation is not
to exceed the value E.

The original min-max problem is recovered for E -+0; this issue is discussed later. The
relationships among w, f., and fJ are indicated in the sketch for the case f = w.

Constraint Relaxation Function £(x)
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The optimal relaxation from among admissible functions (x) is associated with
equality in one of the constraints (25). In other words, in the solution of the relaxed
problem, the difference / - £ (or - J.l/ - £) has constant value equal to the bound p.

For problems with E > 0 the load in the adjoint problem is no longer singular; it is
verified below that multipliers '11 and '12 in fact have constant value wherever they differ
from zero. Note also that the introduction of a relaxation regularizes the problem in the
sense that constraints (25) are regular even through their counterparts in the original
min-max problem may lack regularity (for the case of constraint eqn (2) where/is linear,
this issue does not arise).

An augmented functional for the relaxed problem (24H30) has the form

L* = P - OD(W, w) + b(w) + In ['ll{f - 13 - £) + '12( - J.l/ - 13 - () +'13(Dmin - D)

+ '1s( - £)J dO + '1{In D dO - w] + '1{In ( dO - E] (31)

where the terminology is the same as in (6) except for the additional multipliers '1s and
'16 associated with the constraints that define admissible (x). Stationarity of L * with
respect to 13, w, £ require satisfaction of eqns (14) and (10) as in the original min-max
problem, and in addition

The solution must also satisfy the conditions:

(32)

or

or

or

'1,=0 if /<P+l}
'I, ~ 0 if I =II + (.

'12 = 0 if - / < Jlp + £}
'12 ~ 0 if - / = J.lp +(

'1s =0 if - ( < O}
'1s ~ 0 if - (. = 0

(33)

(34)

(35)

or

'16 ~ 0 if

(36)

The prior condition (II) for stationarity of L with respect to design applies as well to the
functional L·.

The following properties are apparent:
(i) The multipliers '1. and '12 are elements of L 2(0), since constraint equations (10) and

(II) must be in L2(0) when (. is in L2(0). In other words, '1. and '12 are elements of the
dual of £2(0), i.e. £2(0). Therefore Dirac functions do not appear in the "load" for the
adjoint problem in the relaxed or £ -min-max problem.

(ii) The constraint (30) J£ dO s; E is active, since otherwise eqn (36) requires that
'16 = 0, which leads in turn to the requirement from eqn (32) that the non-negative
functions '1" '12' '1s have zero value almost everywhere. The latter condition would violate
eqn (14).

(iii) From eqn (35), £ > 0 implies '13 = 0, whereby from (32) '11 + '12 = '16 has constant
value for this case. Furthermore, since (from eqns (33) and (34» '11 . '12 =0 it follows that
when (. > 0 either

('11 = '16 and '12 =0) or ('11 = 0 and '12 = '16) .
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Thus either the upper or the lower constraint on f is acctive when (. is non-zero, and the
load in the adjoint eqn (10) has constant value. Combining this with the fact that from
(ii) I (. dO =E leads to the conclusion that the optimal solution takes "maximum
advantage" of the possibility for f to exceed the value {3, as afforded by the presence of
the relaxation function £(x).

A reduced form for the set of necessary conditions may be used as a basis to derive
an algorithm for numerical computation of the optimal solution. Also, the appearance of
state eqn (3) and the adjoint eqn (10) in variational form makes it convenient to apply
the finite element method for solving the problem. To have assurance about the stability
of the method relative to choice of mesh (mesh-size), the question of existence of the
solution to the distributed parameter problem (24}-(30) is important.

It is possible to show existence of solutions to (24}-(30) for all E ~ 0, i.e. for both the
£-min-max and for the original min-max problems, if the following conditions are met:

-The states w given by the state eqn (3), with designs that satisfy the given production
and volume constraints (e.g. (27) and (28», constitute a weakly compact subset of H 2(0).

-The mapping (w, D)~f(w, w', w", D) is continuous and linear as a map into L 2(D).
-In £ dO s; E is replaced by 11£ IIL2 S; E.
Note that the latter property does not affect in any significant way the optimality

conditions as discussed previously. The first property means that the set of designs must
necessarily be G-closed, and in most cases the compactness then follows from an imposed
lower bound (e.g. (27» on the designs (Bendsoe[9]). The second property ensures that the
inequality constraints (25) can be rewritten as equality constraints for continuous, convex
functionals: if g + denotes the positive part of a function, i.e.:

g+(X)={ 0 ifg(x)S;O
g(x) if g(x) > 0

then the constraints (25) can be rewritten as:

t[±f(w, w', w", D) - f3 - £]+2 dO = O. (37)

The details of the existence proof are given in Appendix 1.
For example, in the plate design problem with thickness h of the plate as the design

variable, the first property is satisfied if (see Bendsoe[9])

h£H1(0),th dO S; W, h ~ hmin > 0 a.e.

IlhllH, =(t (h 2 + (grad h)2) dO)I/2 S; M (38)

i.e. we impose a constraint on the slope of the design-variable. Niordson[lO] and
Litvinov[ll] introduced this kind of constraint in their treatment of plate design problems.

Let us finally note that if existence of solutions to the problem (24}-(30) is guaranteed
by the satisfaction of the above conditions, then when the bound E on the "violation­
function" £ goes to zero, the solutions of the £-min-max problem (with J.t = I) will
converge to a solution of the original min-max problem. (A proof of this is provided in
Appendix 2.) In this way the problem (24}-(30) for small E is identified as an approxi­
mation to the original min-max problem, and E can be thought ofas a perturbation factor.

EXAMPLE PROBLEM

The main features of the relaxed formulation are to be illustrated via the treatment of
an example problem. We consider the design of a beam to minimize maximum displace­
ment, i.e. the casef =w cited at the beginning of this section. Suppose beam cross-section
A(x) is the design variable, and for this example the beam rigidity R(x) is taken to be
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proportional to A k, i.e. R(x) = rA k(X). Then the state equation is given by
J~ (rAkW"V" - pv) dx = 0, and L" is obtained from (31) with.r. D, and Dmir, replaced by
w, A, and Amin• To proceed toward a specific solution, for a cantilevered beam supported
at x = 0 under uniform load, w(x) increases monotonically with x. Thus there is a value,
say xo, such that

(x) =0 for 0 =:;; x =:;; xu: (x) > 0 for Xu < x =:;; I.

The corresponding load '11 in the adjoint problem is (the notation for multipliers 'II
through '16 is the same as in eqn (31): also since w(x) ~ 0, '12 =0):

( ) _ { 0 for 0 =:;; x =:;; Xo
'11 X - I

for Xu < x=:;;l
I-xu

Note that '11 has constant value wherever it differs from zero. Without the constraint
relaxation c(x), the adjoint load is given by the Dirac IS-function at x = L.

Integrating the state and adjoint equations leads to

I
AkW " =F(x) = - Po(/- X)2

2

{
! (I + x ) - x for 0 =:;; x =:;; Xu

Akw"=G(x)= 2 0

(/- x)2/2(/- xu) for Xo < x=:;; r

The design itself may be expressed as

{
Amin for XI =:;; X =:;; I

A (x) = k + I JkF(x)G(x)/'I6 for 0 =:;; x =:;; XI

where the value XI is obtained from

which is the optimality condition (27) evaluated for the point Xl' Taking specific values
I = I, k = I, Ami" = I, Po =2 and W=5.15, the complete design is given by Xo = 1/2,
XI = 3/4 and:

{

I
A(x)= 16(I-x)2

16(1 - x) J3/4 - x

This design is pictured in Fig. 3.

for 3/4 =:;; x =:;; I
for 1/2 =:;; x =:;; 3/4
for 0 =:;; x =:;; 1/2.

OTHER APPLICATIONS

The convenience afforded by the transformation ofmin-max design problems to simple
min problems and by the relaxation ofconstraints, as demonstrated on the beam examples,
might be realized in the context ofvarious other problems in mechanics and optimal design.
Two other types of design problems are discussed briefly in this section, the problem of
design for elastic bodies in contact, and the formulation for optimal remodel design.

The objective to minimize relative to design the maximum value ofcontact pressure may
be taken as the basis for optimization in contact problems (see, e.g. (12)). The case where
the purpose is to design the initial gap, say go(x), between the bodies is used as a particular
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W < l! W .. l!+ti t > 0

Fig. 3. Optimal design of a cantilevered beam within a relaxed constraint on displacement.

example. Thus the problem is stated as:

min (maxp(x»
gOEr :<EX

Subject to:

"State equations"

fgodx -G ~O.

The corresponding min problem, stated in terms of bound p on pressure, has the form:

minp
goEr

Subject to:

"State equations"

p-p~O
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Pressure p(x) is of course a function of state. (In its present usage, the term "state
equations" is intended to reflect the usual constraints for contact problems, as well as the
governing field equations and boundary conditions. In the procedure of [12], for example,
the gap constraint

J II
g(x) =go(x) - u(x) - u(x) ~ 0

was appended to the potential energy for the two bodies; then the associated multiplier
turns out to be contact pressure. Here a' and all represent outer normal displacement of
the two bodies evaluated along the contact boundary interval.)

The necessary conditions for the min problem reproduce results obtained earlier, but
with the clear advantage that the Lagrangian for the problem in this form directly reflects
the original design objective. Also, the introduction of a constraint relaxation may be
useful in the analysis for contact problems, e.g. the presence of a relaxation £(x) :F 0 in
the constraint gap g(x) assures that ordinary functions will suffice to express the contact
pressure.

The formulation of optimal remodel design represents a quite different example
application. The name refers to the type of problem where the purpose is to predict the
design for optimum modification of a given structure, rather than the overall optimal
design. For the problem in its general form[!3], the solution may represent a combination
of reinforcement (added material) over some parts, and lightening (removed material) over
other parts of the domain of the structure.

The purpose of discussing the problem here is to point out that the general remodel
problem can be represented quite simply with the use of a relaxation in the local constraint
on design. The problem is stated:

min fJ
dlx)

Subject to:
"State equations"

f-fJsO

-Jlf-fJ sO

-(d+dsO

E-t£dxSO

t(d+£)dx -D sO

Here d(x) represents a remodel design, and £(x) may be interpreted as a relaxation of
- d(x) S O. For the case D > 0 and E =0, the problem statement corresponds to
"reinforcement only" modifications. On the other hand, a value E > 0 is the global
measure of material removed. It may be verified from the necessary conditions for this
problem statement that if both D > 0 and E > 0, the design modification d(x) must be
negative over some intervals of the design domain and positive over others, Le. d(x)
represents a general remodel.

CONCLUSION

A variational formulation has been demonstrated for the sort ofmin-max problems that
are typical in structural optimization. This formulation, expressed as a simple min problem
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with appropriate constraints, makes it posible to treat the min-max design problem directly,
without the need to interpret constraint functions in terms of a global measure.

Other considerations motivate the treatment of such problems in modified form, a form
obtained by introducing a relaxation into certain of the constraints. It is shown in particular
that in cases where singularities might otherwise appear in the adjoint problem, such
singularities are not present in the modified form.
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APPENDIX I

Existence proof

Problems (24H30) of the section on analytical development can be fonnulated as follows; with 4l(w, t, (J) =P

subject to

minimize ell....•

F(w, t, (J) =G(f(w) - t - (J) + 2dn}12 = 0

G(W,t,{J)=G(-f(W>-t-Cl{J)+2dn}12 =0

t ~ o,lltll1.2 S E

weY

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

where cIl:X....~, X = W(O) x Ll(O) x ~ and Y is the set of states (responses) corresponding to the admissible
set of designs. We will assume that:

-w....f(w) is linear and continuous as a map from W(O) to V(O).
- Y is weakly compact in W(O).

First note that



314 J. E. TAYLOR and M. P. BENDSUE

is convex, closed and bounded and thus weakly compact in the reflexive space L~n). As Y by assumption is
weakly compact we thus know that for a minimizing sequence of designs and the corresponding minimizing
sequence (wo• Ea. Po) for cP. there exists a weak limit (w, E. P)EY X Z x 91 for a subsequence of (wo• Ea. Po)' As
weY we have an admissible design and as EeZ we have (1.4) satisfied.

Since ell is weakly continuous. existence for the problem (I.IHI.5) may be proved simply by showing that
if clements in a sequence (wn, (n,lln) in X satisfies (1.2) and (1.3). then a weak limit (w. (. fJ) also satisfies (1.2)
and (1.3). In other words, it is necessary to show that

are weakly closed sets of X. The assumptions on f assures that F and G are convex and continuous. so that
F-I({O}) and G-I({O}) are convex and closed sets of X and thus weakly closed.

Continuity and convexity of F and G may be shown as follows. From the fact that F (and likewise for G)
is the combination A.oA3oA2oA I of the following continuous maps:

A I :(11', C, (1) ([(11'), C. (I)

A2 :(II'.c.P) 1I' -c-P
A3:w ...w+

A.:w"'llwII L,

as a map

as a map

as a map

as a map

H l X L2 X []I ...(L 2)3

(L2)3 ...U
L2_L2

L 2_91

we get that F is a continuous map. The convexity of G (and likewise for F) is seen from the following calculations:

G().(WI' CI•PI) +(I - ).)(11'2' £2' (2»

= II( - f().W I +.(1 - ).)wJ -.I.e, - (1 - ).)£2 - ).PI - (I - ),)PJ+ 112

S 11).( - f(w l) - £, - PI)+ + (1 -).)( - f(w2) - £2 - (2)+ Ib

S )'G(WI•£,. PI) + (1 - )')G(W2• £2' PJ

for OS). S I.

APPENDIX 2
Convergence of the modified problem for E-O

The notation and assumptions of this appendix are the same as in Appendix I; we thus consider the problem

minimize (II'. C. P) =P (2.1)

subject to

(II'. c. (J)eF-I({O})nG -I({O}) (2.2)

£ SO.II£IIL,SE (2.3)

weY (2.4)

where ell: X ...91, X =Hl(,n) x L2(n) x 91 is weakly continuous. and the constraint set in X given by (2.2H2.4)
is weakly compact.

Now let (E.) be a sequence of numbers so that E....O for n - IX, and let (11'., c.' P.) be the corresponding
sequence of solutions to the problem (2.IH2.4). Thus c.-O in L2 by (2.3) and also c.-O weakly in L2. and
as Y is weakly compact there exists in Y a weak limit II' for a subsequence of (11'.). Finally, the sequence
Pn is bounded by the minimizing value for the problem (2.IH2.4) with E =O. so P. converges to a number
p. In all. we have that (11'.0, P) is a weak limit for a subsequence of (11'., c•• fJ.). and because F - I( {OJ) and
G -I({O}) are weakly closed. (II'. O. fJ) satisfies the constraint (2.2); (11',0, (I) is thus a solution to (2.IH2.4)
with E =0.

We have thus shown that the solutions to the c-minimax problem (2.IH2.4) for E ...O converges to a
solution to the original min-max problem (for the given assumptions) in the sense that the minimum values
converge and the resulting designs converge in the sense of homogenization. i.e. the corresponding states
converge weakly. For design spaces chosen as in eqn (38). which restricts the gradient of the designs. we also
have weak convergence of the designs themselves (see [9]).

Convergence properties and existence theorems have been studied in greater detail for more general
c-min-max problems by Mclinden [14].


